

Activity 2.3 - Naturalistic Riding Study

Presented by Alistair Weare TRL Researcher – 29/06/2010

Agenda

- 1 Introduction to the NRS
- 2 Methodology & timescales
- The data bikes to be used
- 4 Project completion to date
- 5 The next steps

The purpose of the Naturalistic Riding Study

What history and previous research tells us......

- Behavioural, ergonomic or human factors issues appear to be a major contributing factor to PTW accidents
- Poor or incorrect collision-avoidance strategies are a significant factor in crashes

WP 2.3 – How we see the research....

- No study of real-world motorcycle riding behaviour has previously been published
- Unique opportunity to develop understanding of key rider - and other road user – behaviours
- Potential to record accurately the collision-avoidance measures used by riders in crashes or nearcrash situations

Choice of study method

Review of previous studies to draw information from:

- o100-car naturalistic driving study (USA)
- oField Operational Test Support Action (FESTA) project
- oTest Site Sweden Field Operational Test

Core requirements determining method:

- Naturalistic
- Not unnecessarily risky
 - oRiders must have directly relevant experience of bike similar to test bike
 - oExcessively risky riders eliminated
- oRepeatable in four different countries
 - oClear ethical boundaries
 - oUsing proven technical equipment and processes

Developing a methodology for a bike study

This is an 'exploratory' research activity......

- Key differences
- ➤ Reduced size
- Additional axis of movement
- ➤ Rider exposure
- ➤ Reduced security

Unique challenges

- > Ensuring sensors are installed discreetly
- ➤ Maintaining the handling characteristics
- ➤ Maintaining crash-safety

Naturalistic Driving Study (NRS) Procedure

- Legal and ethical considerations
 - Data protection
 - Duty of care
- Bike setup
 - Accredited installer
- Participant recruitment & briefing
- Data collection
 - > Regular download intervals
 - Face-to-face interviews

- Data analysis
 - Central communal data storage server

Study timescales

Activity	Scheduled worktime		
Participant recruitment	July – August, 2010		
Testing of equipment	July – August, 2010		
Rider data collection	September, 2010 – May, 2011		
Data coding and reduction	September, 2010 – May, 2011		
Data analysis	June – July, 2011		
Reporting	August – September, 2011		

Partners who are taking part in NRS

Instrumented PTW's have been developed by:

- INRETS
- CEESAR
- **UNIFI**
- UoT
- TRL

The INRETS/CEESAR Databikes

Honda VFR 800

Honda CBF1000

Sensors mounted on bikes

Throttle position

3-axis accelerometer

3-axis gyroscope (roll, pitch and yaw)

Handle bar rotation

Brake lever application

Front and rear brake pressures

Turn signal activations

Synchronised video (forward & rider facing)

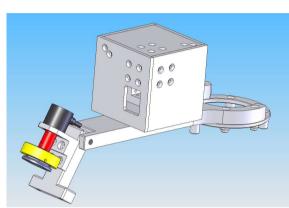
GPS

Plus:

2 additional side-view cameras

Front & rear wheel speeds

The INRETS/CEESAR Databikes



The INRETS/CEESAR Databikes

The UNIFI databike

Piaggio Beverly Tourer 300

Sensors mounted on bike

Throttle position

3-axis accelerometer

3-axis gyroscope (roll, pitch and yaw)

Handle bar rotation

Brake lever application

Turn signal activations

Synchronised video (forward & rider facing)

GPS

Plus:

Front and rear brake pressure sensors

Front and rear wheel speeds

The UNIFI databike

The UoT / NTUA databike

BMW F650 Funduro

Sensors mounted on bike

Throttle position

3-axis accelerometer

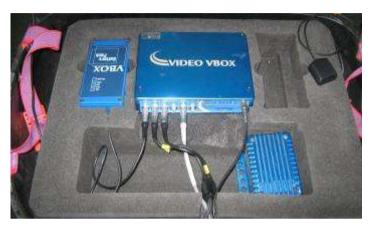
3-axis gyroscope (roll, pitch and yaw)

Handle bar rotation

Brake lever application

Turn signal activations

Synchronised video (forward & rider facing)


GPS

The UoT / NTUA databike

The TRL databike

Honda CBR1000RR 'Fireblade'

Sensors mounted on bike

Throttle position

3-axis accelerometer

3-axis gyroscope (roll, pitch and yaw)

Handle bar rotation

Brake lever application

Turn signal activations

Synchronised video (forward & rider facing)

GPS

Plus:

Front and rear brake pressures

Engine speed

Front and rear wheel speeds

Front fork loading

The TRL databike

Sensor installation

Project completion to date

Country	Legal issues resolved	Ethical approval given	Sensors installed on bike	Bike certified as roadworthy
UK	√	√	√	n/a
France	\checkmark	×	\checkmark	\checkmark
Italy	\checkmark	n/a	\checkmark	n/a
Greece	\checkmark	n/a	√	\checkmark

The purpose of the Naturalistic Riding Study

 To produce fundamental knowledge of PTW rider behaviour, performance and safety

 Understand the implications of riding alone and when interacting with other road users

 Inform and develop a broad and integrated package of countermeasures/public policies for improving the safety of PTW riders in Europe.

Thank you

Presented by Alistair Weare
On behalf of Dr Mark Chattington

Tel: +44 1344 77 0714

Email: mchattington@trl.co.uk

